295 research outputs found

    An Interior-Point algorithm for Nonlinear Minimax Problems

    Get PDF
    We present a primal-dual interior-point method for constrained nonlinear, discrete minimax problems where the objective functions and constraints are not necessarily convex. The algorithm uses two merit functions to ensure progress toward the points satisfying the first-order optimality conditions of the original problem. Convergence properties are described and numerical results provided.Discrete min-max, Constrained nonlinear programming, Primal-dual interior-point methods, Stepsize strategies.

    An outer approximation based branch and cut algorithm for convex 0-1 MINLP problems

    Get PDF
    A branch and cut algorithm is developed for solving 0-1 MINLP problems. The algorithm integrates Branch and Bound, Outer Approximation and Gomory Cutting Planes. Only the initial Mixed Integer Linear Programming (MILP) master problem is considered. At integer solutions Nonlinear Programming (NLP) problems are solved, using a primal-dual interior point algorithm. The objective and constraints are linearized at the optimum solution of those NLP problems and the linearizations are added to all the unsolved nodes of the enumerations tree. Also, Gomory cutting planes, which are valid throughout the tree, are generated at selected nodes. These cuts help the algorithm to locate integer solutions quickly and consequently improve the linear approximation of the objective and constraints, held at the unsolved nodes of the tree. Numerical results show that the addition of Gomory cuts can reduce the number of nodes in the enumeration tree

    Shubnikov-de Haas oscillations spectrum of the strongly correlated quasi-2D organic metal (ET)8[Hg4Cl12(C6H5Br)]2 under pressure

    Full text link
    Pressure dependence of the Shubnikov-de Haas (SdH) oscillations spectra of the quasi-two di- mensional organic metal (ET)8[Hg4Cl12(C6H5Br)]2 have been studied up to 1.1 GPa in pulsed magnetic fields of up to 54 T. According to band structure calculations, its Fermi surface can be regarded as a network of compensated orbits. The SdH spectra exhibit many Fourier components typical of such a network, most of them being forbidden in the framework of the semiclassical model. Their amplitude remains large in all the pressure range studied which likely rules out chemical potential oscillation as a dominant contribution to their origin, in agreement with recent calculations relevant to compensated Fermi liquids. In addition to a strong decrease of the magnetic breakdown field and effective masses, the latter being likely due to a reduction of the strength of electron correlations, a sizeable increase of the scattering rate is observed as the applied pressure increases. This latter point, which is at variance with data of most charge transfer salts is discussed in connection with pressure-induced features of the temperature dependence of the zero-field interlayer resistanceComment: Eur. Phys. J. B, in pres

    Differential DNA accessibility to polymerase enables 30-minute phenotypic β-lactam antibiotic susceptibility testing of carbapenem-resistant Enterobacteriaceae

    Get PDF
    The rise in carbapenem-resistant Enterobacteriaceae (CRE) infections has created a global health emergency, underlining the critical need to develop faster diagnostics to treat swiftly and correctly. Although rapid pathogen-identification (ID) tests are being developed, gold-standard antibiotic susceptibility testing (AST) remains unacceptably slow (1–2 d), and innovative approaches for rapid phenotypic ASTs for CREs are urgently needed. Motivated by this need, in this manuscript we tested the hypothesis that upon treatment with β-lactam antibiotics, susceptible Enterobacteriaceae isolates would become sufficiently permeabilized, making some of their DNA accessible to added polymerase and primers. Further, we hypothesized that this accessible DNA would be detectable directly by isothermal amplification methods that do not fully lyse bacterial cells. We build on these results to develop the polymerase-accessibility AST (pol-aAST), a new phenotypic approach for β-lactams, the major antibiotic class for gram-negative infections. We test isolates of the 3 causative pathogens of CRE infections using ceftriaxone (CRO), ertapenem (ETP), and meropenem (MEM) and demonstrate agreement with gold-standard AST. Importantly, pol-aAST correctly categorized resistant isolates that are undetectable by current genotypic methods (negative for β-lactamase genes or lacking predictive genotypes). We also test contrived and clinical urine samples. We show that the pol-aAST can be performed in 30 min sample-to-answer using contrived urine samples and has the potential to be performed directly on clinical urine specimens

    Onsager phase factor of quantum oscillations in the organic metal theta-(BEDT-TTF)4CoBr4(C6H4Cl2)

    Full text link
    De Haas-van Alphen oscillations are studied for Fermi surfaces illustrating the Pippard's model, commonly observed in multiband organic metals. Field- and temperature-dependent amplitude of the various Fourier components, linked to frequency combinations arising from magnetic breakdown between different bands, are considered. Emphasis is put on the Onsager phase factor of these components. It is demonstrated that, in addition to the usual Maslov index, field-dependent phase factors must be considered to precisely account for the data at high magnetic field. We present compelling evidence of the existence of such contributions for the organic metal theta-(BEDT-TTF)4CoBr4(C6H4Cl2)

    Microfluidic stochastic confinement enhances analysis of rare cells by isolating cells and creating high density environments for control of diffusible signals

    Get PDF
    Rare cells can be difficult to analyze because they either occur in low numbers or coexist with a more abundant cell type, yet their detection is crucial for diagnosing disease and maintaining human health. In this tutorial review, we introduce the concept of microfluidic stochastic confinement for use in detection and analysis of rare cells. Stochastic confinement provides two advantages: (1) it separates rare single cells from the bulk mixture and (2) it allows signals to locally accumulate to a higher concentration around a single cell than in the bulk mixture. Microfluidics is an attractive method for implementing stochastic confinement because it provides simple handling of small volumes. We present technologies for microfluidic stochastic confinement that utilize both wells and droplets for the detection and analysis of single cells. We address how these microfluidic technologies have been used to observe new behavior, increase speed of detection, and enhance cultivation of rare cells. We discuss potential applications of microfluidic stochastic confinement to fields such as human diagnostics and environmental testing

    Differential DNA accessibility to polymerase enables 30-minute phenotypic β-lactam antibiotic susceptibility testing of carbapenem-resistant Enterobacteriaceae

    Get PDF
    The rise in carbapenem-resistant Enterobacteriaceae (CRE) infections has created a global health emergency, underlining the critical need to develop faster diagnostics to treat swiftly and correctly. Although rapid pathogen-identification (ID) tests are being developed, gold-standard antibiotic susceptibility testing (AST) remains unacceptably slow (1–2 d), and innovative approaches for rapid phenotypic ASTs for CREs are urgently needed. Motivated by this need, in this manuscript we tested the hypothesis that upon treatment with β-lactam antibiotics, susceptible Enterobacteriaceae isolates would become sufficiently permeabilized, making some of their DNA accessible to added polymerase and primers. Further, we hypothesized that this accessible DNA would be detectable directly by isothermal amplification methods that do not fully lyse bacterial cells. We build on these results to develop the polymerase-accessibility AST (pol-aAST), a new phenotypic approach for β-lactams, the major antibiotic class for gram-negative infections. We test isolates of the 3 causative pathogens of CRE infections using ceftriaxone (CRO), ertapenem (ETP), and meropenem (MEM) and demonstrate agreement with gold-standard AST. Importantly, pol-aAST correctly categorized resistant isolates that are undetectable by current genotypic methods (negative for β-lactamase genes or lacking predictive genotypes). We also test contrived and clinical urine samples. We show that the pol-aAST can be performed in 30 min sample-to-answer using contrived urine samples and has the potential to be performed directly on clinical urine specimens

    Competing types of quantum oscillations in the 2D organic conductor (BEDT-TTF)8Hg4Cl12(C6H5Cl)2

    Full text link
    Interlayer magnetoconductance of the quasi-two dimensional organic metal (BEDT-TTF)8Hg4Cl12(C6H5Cl)2 has been investigated in pulsed magnetic fields extending up to 36 T and in the temperature range from 1.6 to 15 K. A complex oscillatory spectrum, built on linear combinations of three basic frequencies only is observed. These basic frequencies arise from the compensated closed hole and electron orbits and from the two orbits located in between. The field and temperature dependencies of the amplitude of the various oscillation series are studied within the framework of the coupled orbits model of Falicov and Stachowiak. This analysis reveals that these series result from the contribution of either conventional Shubnikov-de Haas effect (SdH) or quantum interference (QI), both of them being induced by magnetic breakthrough. Nevertheless, discrepancies between experimental and calculated parameters indicate that these phenomena alone cannot account for all of the data. Due to its low effective mass, one of the QI oscillation series - which corresponds to the whole first Brillouin zone area - is clearly observed up to 13 K.Comment: 8 pages, 8 figures. To be published in Phys. Rev.
    corecore